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Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-
motivated and phenomenologically interesting, particularly in the context of asymmetric generation of
the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of
electroweak-neutral dark-matter baryons for a three-color, QCD-like theory withNf = 2 and 6 degenerate
fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous
magnetic moment, both of which can play a significant role for direct detection of composite dark mat-
ter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for
dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100,
excluding dark matter candidates of this type with masses below 10 TeV.

PACS numbers: 11.10.Hi, 11.15.Ha, 95.35.+d

Introduction Experimental bounds on the interaction
of the dark matter with Standard-Model (SM) particles
have strengthened by many orders of magnitude in recent
years. In particular, dark-matter particles cannot have SM-
strength couplings to electroweak gauge bosons, based on
direct-detection constraints [1, 2]. At the same time, there
is a strong motivation for the dark matter to couple to the
SM in some way for the purpose of relic density generation,
either as a thermal relic via the so-called “WIMP miracle”
(see [3] for a recent review) or through an asymmetric sce-
nario which may be related to the creation of baryon asym-
metry [4–11]. Construction of dark matter models thus re-
quires a careful balance between the presence and absence
of dark-sector interactions with the SM.

Composite dark matter models provide a simple mech-
anism for attaining this balance, one which can lead to
interesting and unique phenomenology. By hypothesiz-
ing a new, confining gauge force in the dark sector, an
electroweak-neutral composite dark matter candidate can
be constructed as a bound state of electroweak-charged
constituents. In this way, electroweak interactions can be
active in the early Universe for the generation of relic den-
sity, but only neutral bound states survive to the present
day. Electroweak coupling to the constituents is still possi-
ble, leading to form-factor suppressed interactions with the
neutral composites. They can be roughly estimated from
QCD analogs, but in general can be determined quantita-
tively only by lattice calculations.

In this paper, we consider an underlying SU(3) gauge
theory with fermions in the fundamental representation, but

focus on fermions not associated with electroweak break-
ing. We use SU(3) because much is known about it from
lattice QCD and because we have already generated lattice
vacuum states of SU(3) with 2 and 6 fundamental flavors
on large lattices [12, 13]. We take the fermions to be mass-
degenerate SU(2)L singlets such that Q = Y . We con-
sider a two-fermion theory (Nf = 2) with Qu = 2/3 and
Qd = −1/3, as well as a six-fermion theory (Nf = 6)
with three such pairs of fermions. In either case, the light-
est baryon is expected to be electrically neutral, and will
therefore also have vanishing weak charge. The dominant
contribution to its interaction with ordinary nuclei will be
due to single photon exchange, which can be parameter-
ized primarily in terms of its magnetic moment and charge
radius. In these initial lattice calculations we consider only
quark-line connected contributions to the charge radius and
magnetic moment. We compute the electromagnetic form
factors of this particle to extract these quantities, describe
their dependence on Nf , and discuss consequences for di-
rect detection.

One could also modify or enlarge the fermion content
of the SU(3) gauge theory to include SU(2)L-doublet
fermions. This would be a necessary modification in or-
der to consider composite dark matter arising in a theory of
dynamical electroweak symmetry breaking [4–9, 14–20].
Careful model building is then required to ensure that the
lightest baryon is net electroweak neutral. We do not dis-
cuss this possibility here.

Model setup For the theory with SU(2)L-singlet
fermions carrying charges Qu = 2/3 and Qd = −1/3,
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with Nf = 2 or 6, the analogue of the neutron (N ∼ udd)
will be the dark matter candidate, with mass MB and car-
rying no net electroweak charge. It is stabilized by conser-
vation of dark baryon number. The other charged baryons
are expected to be heavier due to electromagnetic mass cor-
rections of order ∆M ∼ αMB/4π. We include a fermion
massmf , essential for lattice calculation purposes, and ex-
amine dependence on mf for a range mf �MB .

Our dark sector also contains N2
f − 1 pseudo-Nambu-

Goldstone-boson (PNGB) states. We assume that these
states are unstable, decaying to Standard-Model particles
with a sufficient rate that their presence does not influence
the cosmological history of the Universe.

As our focus is on direct-detection signatures, we do not
consider the dark matter generation in detail here. The con-
finement scale Λ, or equivalently the dark matter massMB ,
is a free parameter in our construction.

Electromagnetic Form Factors Since the neutral
baryon in the SU(2)-singlet theory is the dark matter can-
didate of interest [39], the baryon mass MB (degenerate in
the absence of other interactions) is the dark matter mass.
This mass and all other dimensionful quantities are ex-
pressed in lattice units here.

The quantities of central interest here are the Dirac and
the Pauli electromagnetic form factors of a neutral dark-
matter baryon |N(p)〉. For the Nf = 2 case, they can be
expressed in terms of matrix elements of the vector currents
of individual quarks as follows:

〈N(p′)|ψγµψ|N(p)〉

= U(p′)

[
Fψ

1 (Q2)γµ + Fψ
2 (Q2)

iσµνqν
2MB

]
U(p) ,

(1)

where ψ = u, d are quark fields, U, U are on-shell baryon
spinors, q = p′ − p, and Q2 = −q2 > 0 is the mo-
mentum transfer. In the forward limit Q2 = 0, the Dirac
form factors are equal to the numbers of the valence quarks:
F u

1 (0) = 1 and F d
1 (0) = 2.

From these one constructs the isovector and isoscalar
form factors[40]:

F v
1,2(Q2) = F d

1,2(Q2)− F u
1,2(Q2) ,

F s
1,2(Q2) = F d

1,2(Q2) + F u
1,2(Q2) .

(2)

Both of these quantities can be extracted from lattice cal-
culations, but the isoscalar contribution contains expensive
disconnected lattice quark contractions, which cancel in the
isovector case, and as a result, isovector form factors are far
more tractable. While we ultimately will calculate the dis-
connected pieces of the isoscalar form factor as well, this
work will focus on only the connected contributions.

For the Nf = 6 case, with three pairs of u(Q = 2/3)
and d(Q = −1/3) fermions, we take the |N(p)〉 state
to be composed of fermions from only one pair. Since we
omit disconnected lattice quark contractions in our calcula-
tion, it is only the currents ψγµψ composed of the fermion

fields from the same pair that contribute to the computed
electromagnetic form factors. Therefore, in our calculation
the other two pairs play a role in only the strong dynamics
of the SU(3) gauge theory.

The full electromagnetic form factors of the neutral dark
baryon[41] are given by

F1,2;neut(Q
2) = QuF

u
1,2(Q2) +QdF

d
1,2(Q2)

=
1

6
F s

1,2(Q2)− 1

2
F v

1,2(Q2) ;
(3)

since F s
1 (0) = 3 and F v

1 (0) = 1, the total charge
F1;neut(0) = 0. For soft single-photon exchange scatter-
ing, only the forward (Q2 → 0) behavior of the electro-
magnetic form factors is relevant. Since the electric charge
F1;neut(0) is zero, only the magnetic moment µneut = κneut
and the Dirac radius 〈r2

1;neut〉 contribute to the scattering
amplitude to the lowest order in Q2:

F1;neut(Q
2) = −1

6
Q2〈r2

1;neut〉+O(Q4) ,

F2;neut(Q
2) = κneut +O(Q2) ,

(4)

The Dirac charge radius 〈r2
1;neut〉 determines the slope of

the form factor in the Q2 → 0 limit:

〈r2
1;neut〉

def
= −6

dF1;neut(Q
2)

dQ2

∣∣∣
Q2=0

. (5)

The definition of the radius (5) is motivated by the alge-
braic identity∫

d3r r2 ρ(r) ≡ −6
dF1(Q2)

dQ2

∣∣∣
Q2=0

, (6)

where ρ(r) is the “charge density”,∫
d3r ei~q~r ρ(r) = F1(Q2) , Q2 ≈

non−rel.
~q2 , (7)

which has physical meaning if and only if the spatial extent
of this distribution is much larger than the Compton wave
length of the composite particle, 〈r2〉 � M−2

B . Since the
total charge,

∫
d3r ρ(r) ≡ F1(0), is zero, the charge den-

sity must have alternating sign (or be exactly zero), and the
integral in Eq. (6) can be either positive or negative.

For the following, we also need to define the mean
squared charge radius 〈r2

E〉, or the “radius” of the charge
form factor GE(Q2),

GE(Q2) = F1(Q2)− Q2

4M2
B

F2(Q2) . (8)

Similar to Eq. (5), the charge radius of the neutral baryon
is equal to

〈r2
E;neut〉

def
= −6

dGE;neut(Q
2)

dQ2

∣∣∣
Q2=0

= 〈r2
1;neut〉+

3κneut

2M2
B

,

(9)
differing from the Dirac radius by only the relativistic cor-
rection∼M−2

B (the Foldy term). This correction is impor-
tant if the size of the particle is comparable to its Compton
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wave length, which is the case for the neutron and the pro-
ton in QCD.

The (anomalous) magnetic moment of the neutral baryon
is related to the isovector and isoscalar moments as

κneut =
1

6
κs −

1

2
κv . (10)

The isovector and isoscalar Dirac form factors are not zero
in the forward limit. Their radii are defined to be indepen-
dent of their overall normalization,

F v,s
1 (Q2) = F v,s

1 (0)
[
1− 1

6
Q2〈r2

1〉v,s +O(Q4)
]
. (11)

The radii of the neutral baryon are related to the isovector
and isoscalar radii as follows:

〈r2
1;neut〉 =

1

2
〈r2

1〉s −
1

2
〈r2

1〉v ,

〈r2
E;neut〉 =

1

2
〈r2
E〉s −

1

2
〈r2
E〉v .

(12)

Simulation Details Lattice calculations are performed
using 323 × 64 domain-wall lattices with the Iwasaki im-
proved gauge action and a domain-wall height of m0 =
1.8. The length of the fifth dimension is fixed at Ls = 16.
By using domain-wall fermions, the calculation preserves
exact flavor symmetry, and chiral-breaking lattice spac-
ing artifacts are suppressed. The calculation is performed
for Nf = 2 at β = 2.70 and Nf = 6 at β = 2.10.
The beta values are tuned to match the confinement scale
of both theories relative to the lattice spacing, includ-
ing MB as we shall see below. For both Nf = 2 and
Nf = 6, five separate mass points are analyzed withmf =
0.010, 0.015, 0.020, 0.025, 0.030. The pion masses (in
units of the nucleon mass) are 0.41 ≤ mπ/MB ≤ 0.52
and 0.44 ≤ mπ/MB ≤ 0.52 for Nf = 2 and Nf = 6,
respectively. Further details and other results from these
ensembles are given in [12, 13, 21].

Calculation and Fitting The parameters of interest are
extracted from two sets of correlation functions: two-point
correlation functions given by

CNN(τ,p) =
∑
x

e−ip·x〈N(x, τ)N̄(0)〉, (13)

and three-point correlation functions

CNON(τ, T,p,p′) =
∑
x,y

e−ip
′·x+i(p′−p)·y×

× 〈N(x, T )O(y, τ)N̄(0)〉 ,
(14)

whereO(y, τ) is the quark vector current density operator.
The long-distance limit of the Euclidean time behavior

of these correlation functions is given by

CNN(τ,p)
τ� 1

∆−→ Z(p)e−Eτ

2E
Tr
[
Γpol(i/p+MB)

]
, (15)

CNON(τ, T,p,p′)
T,τ� 1

∆−→
√
Z(p)Z(p′)e−E

′(T−τ)−Eτ

4EE′
×

× Tr
[
Γpol(i/p

′ +MB)Γµ(i/p+MB)
]
,

(16)

where Γpol is the polarization matrix of the initial and final
baryon spin states corresponding to Eq. (13,14), Γµ is the
fermion vertex function (cf. Eq.(1)),

Γµ = F1(Q2)γµ + F2(Q2)
σµνqν
2MB

, (17)

and ∆ is the difference in energy between the ground
and the first excited state of the baryon. More details on
the form factor calculation on the lattice can be found in
Ref. [22].

We use the standard widely adopted “ratio” method in
order to extract hadron matrix elements from correspond-
ing two- and three-point functions,

RO(τ, T,p,p′) =
CNON(τ, T,p,p′)√
CNN(T,p)CNN(T,p′)

×

×
√
CNN(T − τ,p)CNN(τ,p′)

CNN(T − τ,p′)CNN(τ,p)
,

(18)
where the long Euclidean time behavior yields

RO(τ, T,p,p′)
T,τ� 1

∆−→ 〈N(p′)|O|N(p)〉
+O(e−∆τ ) +O(e−∆(T−τ)) +O(e−∆T )

(19)

We analyze these ratios for multiple initial and final mo-
mentum combinations and vector current components in
order to extract form factors F1 and F2. Their values form
a reasonable “plateau” as functions of τ , the timeslice of
the current operator insertion, indicating absence of signif-
icant excited-state contaminations (see Fig. 1).

In general, excited states can cause significant system-
atic errors in three-point functions and hadron matrix ele-
ments [23]. We compute our form factor values as averages
of three central points in the plateaus.

The form factors F1,2(Q2) are calculated at discrete val-
ues of the momentum transferQ2 ≈ (p′−p)2 determined
by the lattice volume. We interpolate the Dirac and isovec-
tor Pauli form factors using a dipole formula fit

F1,2(Q2) ∼ A1,2

(1 +B1,2Q2)2
(20)

motivated by nucleon form factor phenomenology. The
isoscalar Pauli form factor turns out to be very close to
zero, and the dipole form that has definite sign does not
necessarily yield a stable fit to the data; therefore, we use
the linear fit Fi(Q2) ∼ Fi(0)+F ′i (0)Q2. Examples of fits
are shown on Fig. 2. We use these fits to interpolate (ex-
trapolate in the case of Pauli form factors) near the forward
limit Q2 = 0 in order to determine κ and 〈r2

1〉.

Lattice Results
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FIG. 1: Examples of form factor plateaus for mf = 0.015 for 2
and 6 flavors. Form factor plateaus are shown for all values ofQ2

for F1 and for Q2 > 0 for F2; corresponding lattice initial and
final momenta are shown in the legends.

Baryon Mass The dark-matter baryon mass is plotted
as a function of the fermion mass mf in Fig. 3. A lin-
ear dependence of the baryon mass on mf can be seen for
both theories, as expected in the calculation regime where
the fermion masses are small. In the absence of additional
interactions, a finite value of mf is required to give mass
to the PNGB’s of the theory, but we nevertheless perform
a linear fit in order to extract the chiral-limit baryon mass
MB0

. This scale, which can be taken as a proxy for the
confinement scale of the theory, serves as a common refer-
ence scale for the calculation results with mf ≥ 0.

Anomalous magnetic moment The anomalous mag-
netic moment is the most important for direct detection ex-
periments. It enters at the dimension-5 level in the baryon
effective field theory and arises as the zero-momentum
value of the Pauli form factor, F2(0). The isovector Pauli
form factor, giving κv, is under most control since all ex-
pensive disconnected contributions cancel due to isospin
symmetry. The isoscalar channel, which is also necessary
to determine κneut, has both connected and disconnected
contributions to the three-point correlation function. In this
initial work, we omit the disconnected contributions and
assume the connected pieces dominate the isoscalar contri-
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FIG. 2: Examples of Q2 fits of Dirac and Pauli form factors
F1,2(Q

2) for mf = 0.015 for 2 and 6 flavors. The bands show
the dipole fits for all form factors except F s2 , for which we used
the linear fit for Q2 → 0 extrapolation.

bution.
We plot the anomalous magnetic moment κneut, com-

puted as described above, versus MB/MB0
in Fig. 4. It

shows little dependence on the mass and little dependence
on the number of fermions. The Nf = 2 results κneut ≈
−(1.71 . . . 2.09) are consistent with the measured neutron
value κ = −1.91 [24]. Calculations of nucleon structure
with Nf = 2 Wilson fermions were previously reported
in Ref.[25], which found values κneut ≈ −(1.30 . . . 1.45),
with the difference coming predominantly from the isovec-
tor Pauli form factor; our results for this form factor more
closely match the more recent results of [26, 27].

Charge radius While the charge radius is expected to
lead to a smaller effect on the spin-independent cross sec-
tion as compared to the magnetic moment, it could have a
significant effect if its value depends significantly on Nf .
It is therefore informative to explore the relative size of the
charge radius contribution to the spin-independent cross
section. As with the magnetic moment, only the isovec-
tor charge radius is absent of disconnected lattice quark
contractions, but we omit them for the isoscalar channel
as well.

The results for the mean square charge radius 〈r2
E;neut〉
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FIG. 3: Dark-matter baryon mass (in lattice units) with Nf = 2
(red, lower curve) and Nf = 6 (blue, upper curve), as a func-
tion of the fermion mass mf (also in lattice units). The two data
sets are extrapolated to obtain the chiral-limit baryon mass MB0

,
which is used to set a physical scale independent of amf . With
the chosen lattice couplings, MB0

is the same within statistical
precision in the Nf = 2 and Nf = 6 theories.
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FIG. 4: The neutral baryon anomalous magnetic moment for
Nf = 2 (red triangles) and Nf = 6 (blue circles) theories versus
dark-baryon mass. This quantity shows no systematic separation
between two and six flavor theories.

of an electroweak-neutral dark-matter baryon are presented
in Fig. 5. Note that the results are negative (see discussion
after Eq. (6)). As in the case of the anomalous moment, our
results show little dependence onNf and little dependence
on the dark-baryon mass as it varies due to changes in the
underlying fermion mass. If the fermion mass is reduced
further, bringing MB/MB0

closer to unity, the magnitude
〈r2
E;neut〉 is expected to grow. This is because the PNGB

mass drops, and the charge radius is quite sensitive to the
size of the PNGB cloud.

For Nf = 2, this point can be made more pre-
cisely by comparison to QCD. There, the mean squared
charge radius of the neutron is also negative, 〈r2

En〉 =
−0.1161(22) fm2 [24]. Our Nf = 2 calculation corre-
sponds to QCD with MB ≈ 1 GeV, but with relatively
heavy underlying quarks, and thus relatively heavy pions:
the pion mass in units of MB ranges between the light-
est mπ/mB = 0.41 to the heaviest mπ/mB = 0.52. In
QCD units, our lattice spacing is given by a ≈ 0.055 fm,
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-20
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5
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<
r E
,n
eu
t2
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FIG. 5: The neutral baryon mean squared charge radius (in lat-
tice units) for Nf = 2 (red triangles) and 6 (blue circles), versus
dark-baryon mass. Again, no significant systematic difference
between the two theories is seen over the range of masses consid-
ered.

so our result is 〈r2
E,neut〉 ≈ −(0.009 . . . 0.025) fm2,

substantially less than the observed result. Previous
calculations of nucleon structure with Nf = 2 Wil-
son fermions [25] yielded similar values 〈r2

E,neut〉 =

−(0.011 . . . 0.023) fm2. These results, too, employed rel-
atively heavy underlying quarks. In our case, further stud-
ies with smaller fermion mass can shed light on the range of
direct detection allowed values for the mean square charge
radius.
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FIG. 6: Calculated XENON100 event rates based on energy cuts
and acceptance rates from Ref. [28] (solid lines). For comparison,
we also show scattering rates using only the charge radius term,
which is suppressed by two additional powers of Mχ (dashed
lines). The experimental upper bound on event rates, based on
accumulated 2323.7 kg·days of exposure [28] are shown with the
dotted lines.

Direct detection exclusion plots We next compare our
calculations of dark-matter parameters with the current
experimental bounds on the dark-matter-nucleus cross-
sections in direct detection experiments. Currently, the
most stringent bound is provided by the XENON100 ex-
periment [28], in which hypothetical dark-matter particles
are detected through their collisions with xenon nuclei with
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Z = 54 andA = 124 . . . 136, and which has accumulated
2323.7 kg·days of effective exposure. Two of the isotopes,
129Xe and 131Xe, have non-zero spin and are sensitive to
the spin-dependent M1 interaction. Their combined abun-
dance constitutes approximately 1/2 in natural xenon [29].

In this section, we adopt a more conventional notation
Mχ for the mass of the dark-matter particle, and also de-
note its radius and magnetic moment with a subscript “χ”.
Figs. 4 and 5 show that the anomalous moment and
mean square charge radius vary little with the amount of
the dark-matter mass coming from the underlying fermion
mass (and also vary little as Nf is increased from 2 to 6).

The differential cross-section of a dark-matter fermion
and a nucleus, to leading order in the non-relativistic dark-
matter velocity v � 1 is

dσ

dER
=

|MSI|2 + |MSD|2
16π(Mχ +MT )2Emax

R

, (21)

where MT is the mass of the target nucleus, and Emax
R =

2M2
χMT v

2

(Mχ+MT )2 is the maximal recoil energy for given colli-

sion velocity v. The quantities and |MSI,SD|
2

are spin-
(in)dependent amplitudes squared, averaged over initial
and summed over final states:

|MSI|2 = e4
[
ZFc(Q)

]2 (MT

Mχ

)2[4

9
M4

χ〈r2
Eχ〉2

+
(

1 +
Mχ

MT

)2

κ2
χ cot2 θCM

2

]
,

(22)

|MSD|2 = e4 2

3

(J + 1

J

) [(
A
µT
µn

)
Fs(Q)

]2

κ2
χ . (23)

Here, Z and A are the charge and atomic numbers of
a specific xenon isotope, (µT/µn) is the nucleus magnetic
moment expressed in Bohr magnetons µn = e

2mn
, Fc,s(Q)

are its nuclear charge and spin form factors, respectively, at
the momentum transferQ ≈ √Q2 =

√
2MTER, and θCM

is the scattering angle in the center-of-mass frame [42]. For

non-relativistic velocities, cot2 θCM
2

=
(
Emax
R

ER
− 1
)

.

For the nuclear response form factors Fc,s(Q2), we use
the following commonly accepted phenomenological ex-
pressions [18, 30]:

|Fc(Q)|2 = 9

∣∣∣∣sin(QRc)− (QRc) cos(QRc)

(QRc)3

∣∣∣∣2 e−(QS)2

,

(24)

|Fs(Q)|2 =

{
0.047 , 2.55 ≤ QRs ≤ 4.5 ,∣∣∣ sin(QRs)

QRs

∣∣∣2 , otherwise ,
(25)

where Rc = 1.14A1/3 fm, Rs = 1.00A1/3 fm, and S =
0.9 fm. The nuclear response functions Fc,s(Q2) can also
be evaluated using nuclear models, as was done in Ref. [31,
32].

Following Refs. [18, 28], we compute the scattering rate
for a range of dark-matter particle masses with the recoil
energies ER = 6.6 . . . 43.3 keV:

R =
Mdetector

MT

ρDM

Mχ

∫ Emax

Emin

dERAcc(ER)
〈
v′

dσ

dER

〉
f
,

(26)
where 〈·〉f denotes averaging over the DM velocity distri-
bution (27), v′ = |~v − ~vEarth| is the dark-matter velocity
with respect to the detector (the Earth), and Acc(ER) is
the recoil energy-dependent acceptance rate of the detec-
tor [28]. We assume the thermal distribution of velocities
in the galactic dark-matter halo [30],

d3n

d~v3
= f(~v) =

1

π3/2v3
0

e−~v
2/v2

0 ,

∫
|~v|<vesc

d3~v f(~v) ≡ 1 ,

(27)
with v0 = vEarth = 220 km/s, vesc = 544 km/s, and the
dark-matter mass density ρDM = 0.3 GeV/cm3. Finally,
we average the expected scattering rate over the natural
xenon isotopic abundances.

We show computed scattering rates in Fig. 6 with solid
lines. The accumulated XENON100 statistics [28] exclude
composite dark matter particles with Mχ . 10 TeV. With
fixed values of the dimensionless quantities M2

χ〈r2〉 and κ
computed on a lattice, the differential cross-section scales
as

dσ

dER
∼ A(M2

χ〈r2
Eχ〉)2

M4
χ

+ B κ
2
χ

M2
χ

. (28)

The charge radius contribution is suppressed as M−2
χ rel-

ative to the magnetic moment contribution and becomes
negligible with growing Mχ. In the scattering rate shown
in Fig. 6, both contributions are additionally suppressed by
the DM particle number density ρDM/Mχ as Mχ → ∞
(see Eq.(26)). The large-Mχ scaling of the charge radius
term is shown in Fig. 6 with the dashed lines; it is ev-
ident that the total scattering rate (solid lines) is domi-
nated by the magnetic moment term for dark matter masses
Mχ & 25 GeV. Even if one were to make the charge ra-
dius as much as an order of magnitude larger by reducing
the PNGB mass (see the discussion following Fig. 5), its
contribution would still be negligible at MB = 10 TeV,
the lower limit of the allowed region.

Discussion We have studied the electromagnetic form
factors of electroweak-neutral dark-matter baryons in an
SU(3) gauge theory with Nf = 2 and 6 SU(2)L-singlet
fermions, with charge assignments +2/3 and −1/3 (one
pair or three pairs). These baryons have the desired proper-
ties of dark matter since they are stable, electroweak neu-
tral, and can explain the relic density through the same
early universe sphaleron process that describes baryogene-
sis.

Of particular interest to direct detection experiments are
the anomalous magnetic moment and mean square charge
radius of the dark-matter baryon. These parameters deter-
mine the observed cross-section with nuclei (in this work,
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we primarily focus on xenon) due to (dominant) single-
photon exchange. The contribution from the dark-matter
anomalous moment dominates the charge-radius contribu-
tion for Mχ & 25GeV. However, in our calculation the
charge radius 〈r2

E〉 turns out to be particularly small, much
smaller than it is in QCD. Exploring smaller quark mass re-
gions may change this balance and make the charge radius
more relevant for the direct detection of the dark matter.

Examining the dark matter exclusion plots in light of
the latest XENON100 results [28], we conclude that in
these theories, dark-matter masses less than 10 TeV are ex-
cluded. We have so far seen little dependence on Nf . It
will be interesting to see whether this begins to change,
even continuing to neglect disconnected quark contrac-
tions, as Nf is increased toward the edge of the confor-
mal window (Nf ≈ 10 − 12 for an SU(3) gauge theory
with fermions in the fundamental representation). When
the disconnected contractions are included, additional Nf

dependence will arise simply from the counting of these
loop contributions.

As we have shown in this work, with non-zero magnetic
moment the experimental constraints on the dark matter
mass are quite stringent. This naturally motivates the con-
sideration of even Nc theories, in which the baryons are
bosonic and thus have no magnetic moment. Interactions
can be further suppressed if the charge assignments are
symmetric in such a way that the charge radius vanishes
(see e.g. [19]), making the electromagnetic polarizabilities
the dominant interactions. Some initial lattice work on the
zero-temperature dynamics of such theories has been car-
ried out in [33, 34], and we are currently planning similar
calculations with an eye towards dark matter form factors.
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